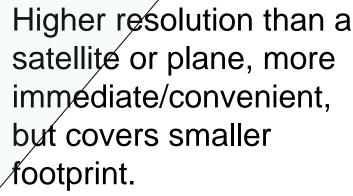


Manitoba Potato Production Days, Brandon, MB Jan 27-28, 2016

University of Minnesota

Driven to Discover™


Crop reflectance

- Leaf reflectance
 - Pigments
 - Internal leaf structure
 - Water content
- Canopy reflectance
 - Leaf reflectance
 - Plant geometry
 - Orientation & distribution

UAVs fill a platform gap, provide more options/tradeoffs for resolution, speed, & immediacy

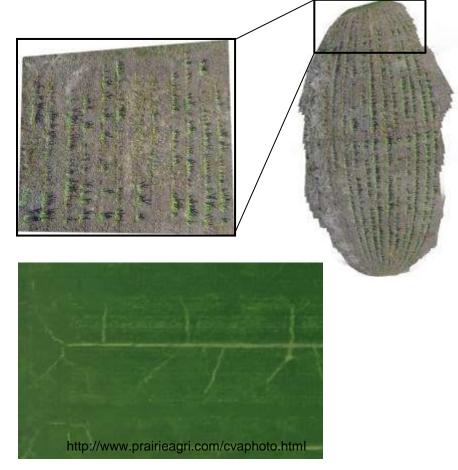
Less detailed info than a person/ATV, but covers a bigger footprint.

Economics depend on what's being sensed & how

3-D Robotics Iris

Sentera NIR imagers

GoPro Hero3



University of Minnesota

Driven to Discover™

Visible data

- Currently collaborating on stand counts in experiment plots
- Think hail damage, herbicide drift, planter skips, flooding, heavy defoliation....

 Any problem you can easily see from the ground, you can probably see from the air.

Software Tools

- Stitching (putting the images together)
 - E.g. Autopano giga,
 GIS (e.g. ArcInfo),
 ENVI
- Image / Data Analysis
 - incl. ENVI,
 PixelWrench (for simple analysis of TetraCam)
- Depends on what analysis is necessary

Other Ongoing Projects

- Damage from insect feeding
 - Rice borer, sugarbeet root maggot, soybean aphid & Colorado Potato Beetle
- Disease
 - Potato Virus Y (vectored by aphids)
 - Bacterial Leaf Streak
- Differentiating between stressors
 - Can't yet do this can see stress but difficult to assign cause!
 - Aphids vs BSR and SDS in soybean

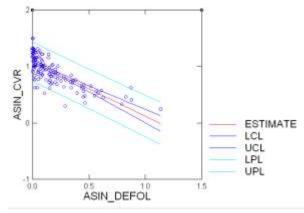
Defoliation estimates

- Percent defoliation estimated weekly by 3-4 RAs, 4-5 total plants sampled in center 2 rows of each plot center rows avoid border effect) & mean % defoliation calculated
 - All workers synchronized estimate values prior to sampling

Canopy segmentation

- Many NIR cameras have proprietary software, most have supervised classification – you can 'train' the software to differentiate between vegetative and non-vegetative pixels (e.g. soil)
- based on min & max red & NIR values (e.g. red<6, NIR <20), non-vegetative pixels rendered to a user-specified solid color while leaving

- Process Identify spectral reflections of representative nonplant areas to create selection sieve values for selection decisions
- Delineate the area of interest and perform analysis.
- % canopy coverage then calculated, if images is geocoded, then area can be determined


Results

Observed % canopy defoliation and calculate

Junation to action aerial Junation to estimates from aerial Accurate a proposition estimates accurate a proposition per accurate e at least as accurate as % calculated canopy coverage ground observers!

	eto	are	m
Dependent Var	40	5	4011
N	~200	4.6	
Multiple R	Min	ates	
Squared Multiple R	i in		
Adjusted Squared M	- CI		
Standard Error of Est	63		
_			

Effect	Coeffi	Standard Error	Std. Coefficient	Tolerance	t	p-Value
CONSTANT	1.083	0.020	0.000		55.164	0.000
ASIN_DEFOL	-0.964	0.071	-0.766	1.000	-13.655	0.000

